Michael Faraday did not directly contribute to mathematics so should not really qualify to have his biography in this archive. However he was such a major figure and his science had such a large impact on the work of those developing mathematical theories that it is proper that he is included. We say more about this below.
Faraday's father, James Faraday, was a blacksmith who came from Yorkshire in the north of England while his mother Margaret Hastwell, also from the north of England, was the daughter of a farmer. Early in 1791 James and Margaret moved to Newington Butts, which was then a village outside London, where James hoped that work was more plentiful. They already had two children, a boy Robert and a girl, before they moved to Newington Butts and Michael was born only a few months after their move.
Work was not easy to find and the family moved again, remaining in or around London. By 1795, when Michael was around five years, the family were living in Jacob's Wells Mews in London. They had rooms over a coachhouse and, by this time, a second daughter had been born. Times were hard particularly since Michael's father had poor health and was not able to provide much for his family.
The family were held closely together by a strong religious faith, being members of the Sandemanians, a form of the Protestant Church which had split from the Church of Scotland. The Sandemanians believed in the literal truth of the Bible and tried to recreate the sense of love and community which had characterised the early Christian Church. The religious influence was important for Faraday since the theories he developed later in his life were strongly influenced by a belief in a unity of the world.
Michael attended a day school where he learnt to read, write and count. When Faraday was thirteen years old he had to find work to help the family finances and he was employed running errands for George Riebau who had a bookselling business. In 1805, after a year as an errand-boy, Faraday was taken on by Riebau as an apprentice bookbinder. He spent seven years serving his apprenticeship with Riebau. Not only did he bind books but he also read them.
Faraday himself wrote of this time in his life:
Whilst an apprentice, I loved to read the scientific books which were under my hands ...
From 1810 Faraday attended lectures at John Tatum's house. He attended lectures on many different topics but he was particularly interested in those on electricity, galvanism and mechanics. At Tatum's house he made two special friends, J Huxtable who was a medical student, and Benjamin Abbott who was a clerk. In 1812 Faraday attended lectures by Humphry Davy at the Royal Institution and made careful copies of the notes he had taken. In fact these lectures would become Faraday's passport to a scientific career.
In 1812, intent on improving his literary skills, he carried out a correspondence with Abbott. He had already tried to leave bookbinding and the route he tried was certainly an ambitious one. He had written to Sir Joseph Banks, the President of the Royal Society, asking how he could become involved in scientific work. Perhaps not surprisingly he had received no reply. When his apprenticeship ended in October 1812, Faraday got a job as a bookbinder but still he attempted to get into science and again he took a somewhat ambitious route for a young man with little formal education. He wrote to Humphry Davy, who had been his hero since he attended his chemistry lectures, sending him copies of the notes he had taken at Davy's lectures. Davy, unlike Banks, replied to Faraday and arranged a meeting. He advised Faraday to keep working as a bookbinder, saying:-
Science [is] a harsh mistress, and in a pecuniary point of view but poorly rewarding those who devote themselves to her service.
Shortly after the interview Davy's assistant had to be sacked for fighting and Davy sent for Faraday and invited him to fill the empty post. In 1813 Faraday took up the position at the Royal Institution.
In October 1813 Davy set out on a scientific tour of Europe and he took Faraday with him as his assistant and secretary. Faraday met Ampère and other scientists in Paris. They travelled on towards Italy where they spent time in Genoa, Florence, Rome and Naples. Heading north again they visited Milan where Faraday met Volta. The trip was an important one for Faraday
These eighteen months abroad had taken the place, in Faraday's life, of the years spent at university by other men. He gained a working knowledge of French and Italian; he had added considerably to his scientific attainments, and had met and talked with many of the leading foreign men of science; but, above all, the tour had been what was most valuable to him at that time, a broadening influence.
On his return to London, Faraday was re-engaged at the Royal Institution as an assistant. His work there was mainly involved with chemical experiments in the laboratory. He also began lecturing on chemistry topics at the Philosophical Society. He published his first paper in 1816 on caustic lime from Tuscany.
In 1821 Faraday married Sarah Barnard whom he had met when attending the Sandemanian church. Faraday was made Superintendent of the House and Laboratory at the Royal Institution and given additional rooms to make his marriage possible.
The year 1821 marked another important time in Faraday's researches. He had worked almost entirely on chemistry topics yet one of his interests from his days as a bookbinder had been electricity. In 1820 several scientists in Paris including Arago and Ampère made significant advances in establishing a relation between electricity and magnetism. Davy became interested and this gave Faraday the opportunity to work on the topic. He published On some new electro-magnetical motions, and on the theory of magnetism in the Quarterly Journal of Science in October 1821. Pearce Williams writes
It records the first conversion of electrical into mechanical energy. It also contained the first notion of the line of force.
It is Faraday's work on electricity which has prompted us to add him to this archive. However we must note that Faraday was in no sense a mathematician and almost all his biographers describe him as "mathematically illiterate". He never learnt any mathematics and his contributions to electricity were purely that of an experimentalist. Why then include him in an archive of mathematicians? Well, it was Faraday's work which led to deep mathematical theories of electricity and magnetism. In particular the remarkable mathematical theories on
No comments:
Post a Comment